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Abstract. We derive the modified London equations for a superconductor in a gravitational 
field, write these equations in an elegant covariant form, and show that these equations 
are consistent with the modified fluxoid quantisation condition in a gravitational field 
found by DeWitt. 

1. Introduction 

Fluxoid quantisation in superconductors was first suggested by London ( 1950) and 
later considered by Onsager (1954, 1961) and by Byers and Yang (1961). It was first 
observed experimentally by Deaver and Fairbanks (1961) and by Doll and Nabauer 
(1961). Fluxoid quantisation in superconductors in the presence of a magnetic-type 
gravitational field was first considered by DeWitt (19661, who showed that in a 
gravitational field g set up by a changing magnetic-type gravitational field P, this 
fluxoid quantisation condition must be modified. We will briefly rederive the modified 
flux quantisation condition of DeWitt using simple physical arguments and a descrip- 
tion of general relativity which looks similar to Maxwell’s equations. We will find 
that, in the presence of a magnetic-type gravitational field, magnetic fields B and 
supercurrents J,  exist deep within the superconductor and that the phenomenological 
London equations must also be modified. We derive these modified London equations 
and show that they can be written in an elegant covariant form. These equations, 
which are our primary result, can be applied to various experimental situations even 
by someone not familiar with general relativity. 

Gravitational effects in superconductors serve as a potential test of general relativ- 
ity. Papini (1966, 1967) has shown, however, that such effects are quite small if 
laboratory sources or the rotating earth supply the P field. The effects could be quite 
large near a neutron star. 

In 8 2 we will write down the weak-field gravitational field equations in terms of 
g and P in a form very similar to Maxwell’s equations. In # 3 we derive the modified 
quantisation condition and in B 4 we derive the London equations in covariant form. 

2. Gravitational field equations in vector form 

Forward (1961) first wrote down the gravitational field equations of general relativity 
in a vector form similar to Maxwell’s equations. He called the gravitational field P, 
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which arises from moving masses and which is therefore analogous to the magnetic 
field in electricity and magnetism, the ‘protational’ field, and we shall use this nomen- 
clature. It is also referred to as a magnetic-type gravitational field. A more modern 
version of the equations for weak fields and low velocities written in terms of the PPN 
parameters has been given by Braginsky er a1 (1977% and we use their equations in 
the following. These equations are very convenient for doing practical calculations. 
For simplicity, we shall choose all of the PPN parameters to take on the values for 
general relativity itself. The more general case is easily handled. For general relativity, 
we have 

PoV 4ag V x P = - 1 6 ~ G  - + -- - 
c c c?t 

(4) 

where pn is the density of rest mass in the local rest frame of the matter, U is the 
coordinate velocity of the res: mass relative to the PPN frame, I is the specific internal 
energy, p is pressure and r$ is a gravitational potential. We will be most interested 
in (4), which tells how moving matter produces a protational field P, and in (2), which 
shows how a changing P field produces a g field. We clearly have a very direct 
correspondence between the usual gravitational acceleration field g and an electric 
field and between P and a magnetic field. Equation (2) can be written in the form 

l a  
g . d l =  - - - @  P f c at 

( 5 )  

where DP is the flux of P through the loop defined by the integral on the left. The 
rotating earth, for example, will produce a P field according to (4) in the same way 
that a rotating charge produces a magnetic field. 

3. Fluxoid quantisation in the presence of a protational field 

We shall derive fluxoid quantisation in a manner similar to the treatment of Rose-lnnes 
and Rhsderick (1969), but with the protational field included. Assume that a mass 
m with charge q is moving in a field-free region with velocity u1 and that a protational 
field P is applied at time 1 = 0. While P is building up, there will be an induced g 
field given by (2). The momentum of the mass at time t will then be 

mu2 = mu1 + jOr mg dt. (6) 

Define a potential Q such that 

Y = curl Q. (7) 

curl g = -(l/c)d(curl Q)/dt (8) 

Then 
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and 

g = ---+ l d Q  VX 
c dt (9) 

where x is related to the usual gravitational scalar potential. This Vx term In (9) will 
not contribute to (14) and (15) below since its curl is zero. Thus, for simplicity, we will 
omit it from the following discussion. Putting (9) into 16) then gives the momentum 
at time t as 

(10) mu2 = mu1 - ( m / c  )Q 

n =mu + (m/c)Q (11) 

is conserved during application of the field and Is the effective momentum when a P 
field is present. If we also include the effects of a changing magnetic field, we can 
generalise (1 1) to 

(12) 

where A is the electromagnetic vector potential. For electron pairs, the appropriate 
momentum is np = 2 n  if m and q are the mass ana charge of an electron in (12). 

Now consider the phase of the electron-pair wavefunction in a superconductor. 
The phase difference between two points x and y of the superconductor is just 

so that the momentum 

n =mu +qA + ( m / c ) Q  

where A is the wavelength of the electron pairs and np their momentum defined 
above. For a closed path, this phase difference must be 27rn, where n is an integer, 
so we have 

2an =- 4Tm$Js*d l+-  47re h P 
hnSe 114) 

where m and e are now the mass and charge of an electron. J ,  = en,u is the supercurrent 
density and t i s  is the density of superconducting electrons. Using Stoke's theorem, 
(7) and B 1= curl A allows us to write (14) as 

where Op0 = h/2e, OB is the flux of the magnetic field B through the integration loop 
and Op is the flux of the protationai gravitational field P through the loop. Equation 
(15) is equivalent to the DeWitt (1966) quantisation condition for a superconductor 
in a protational gravitational field. We see that P and B play very similar roles. 

Equation (15) has immediate consequences if Op # 0. Consider an integration path 
deep within a superconductor (not near the surface) and surrounding a normal region, 
The gravitational field P from an external s a m e  such as the earth penetrates the 
superconductor just as it does any other matter. Self-shielding due to mass currents 
in the superconductor is negligible. If we change the integration path an infinitesimal 
amount, QP will change infinitesimally. If (15) is to be maintained for some value of 
n, OB and/or the J, term must also change infinitesimally. Since QB and J ,  are related, 
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in general this means that both B and J, must be non-zero deep within the superconduc- 
tor when (DP is present. This of course implies that the Meissner effect is not exact 
when ( P p  is present and that the London equations must be modified. 

If we consider a closed path deep within a superconductor with no normal regions 
present, we expect n = 0 in (15). In that case, (15) can be written in differential form 
as 

me me 
7 curl J ,  + B  +- P = 0. 
n ,e ec 

i 16) 

Thus we expect (16) to replace the usual London equation. Also, for any perfect 
conductor in the presence of an electric field E and a gravitational acceleration field 
g, we expect 

. rise‘ J,=---EEnn,eg 
m 

as a further modification of the London equations. In the following section we shall 
write the London equations in a new covariant form and show that (16) and (17)  are 
indeed consistent with this covariant formulation. 

4. London equations in covariant form 

We can write the usual London equations very succinctly as 

118) 
Y @  

F,lJ - ,- ILL’ - - 

t FIJ  

and 

rIMlU - ne1, = 0.  (19) 

Here the F” is the electromagnetic field tensor, x u  = ( p ,  j / c )  is the source vector and 
n, =mu, + e A ,  is the momentum four-vector. A vertical bar represents a partial 
derivative. Equation i 181 gives the Maxwell equations 

curl B / p u  = j EF, ,  

and 

div E   IF,) 

(20) 

(21) 

while (19) gives 

~m/n ,e ’ i  curl J ,+  B = G (22) 

for the (space, space) indices and 

for the ispace, time, indices, using J , = n , e o .  cti is the zeroth component of the 
four-velocity so Cc,, just represents any other external force which can act on the 
electrons and can be deleted. Equations (20)-(23) give the complete set of equations 
for a superconductor. If now we put our superconductor in a gravitational field, (18) 
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becomes 

where we now have a covariant derivative. Equation (19) has the same form in a 
gravitational field only now the four-momentum is 

rI, mo, + eA, + (m/c)Q,, (25) 
in agreement with (12). Q, is a gravitational vector potential where Q, = (-4, Q )  and 

P =curl Q. (27) 
The (space, space) part of (19) then gives (16) exactly as we want with an additional 
n,ecVvo term as above which can be deleted. The (space, time) part of (19) gives 
(17) again exactly as we would like. We can write out (24) as 

(28) F r  + F M ” ’ ~  (J-g),” = - s p  
J-g J&‘ 

The (J-g), ,  term vanishes for the Schwarzschild metric in rectangular coordinates 
(in curvilinear coordinates this term is necessary, of course, but does not depend on 
the central mass). For the Kerr metric the leading non-trivial, non-zero term is of 
order m 2 a 4 / r 6  where m is the Schwarzschild mass parameter and a is the Kerr metric 
rotation parameter. All lower-order terms cancel out. This term is thus so small for 
most applications that it can be neglected in rectangular coordinates. 

We conclude, then, that (24) and (19) are a covariant description of a superconduc- 
tor in a gravitational field where the gravitational vector potential Q, must be added 
to the four-momentum as in (25). Equations (24), (19) and (25) reproduce (16) and 
(17) and, of course, are consistent with the quantisation condition (15). Thus we end 
up with an elegant, covariant, self-consistent description of a superconductor in a 
gravitational field. 
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